The Team

2017 AIChE Cooper Union Student Chapter Chem-E-Car Team Mubtasim Anjum | Liushifeng Chen | Dave Chun Laarnie delos Reyes | Mickey Huang | Grace Li | John Nguyen Vishesh Padnani | Timil Patel | Andy Qiu

Special thanks to: Professor Daniel Lepek | Victoria Heinz | Revans Ragbir | Mike Westbrook

Operation

$\mathrm{MgCO}_{3}\left(\mathrm{aq}\right)+\mathrm{C}_{6}\mathrm{H}_{8}\mathrm{O}_{7}\left(\mathrm{aq}\right)$

$C_{6}H_{6}MgO_{7}(aq) + H_{2}O(l) + CO_{2}(g)$

1000 1000 1000

Powered by pressurized CO_2 . Ratio of reactants and water (added to promote mixing) optimized through testing.

- Distance traveled controlled by reactant quantity.
- \sim Car stops when CO_2 is used up and Lego engine stops running

Distance Calibration

50% ORGANIC LEMBORALD

The Car

Process Diagram

Unique Features

Lego Pneumatic Engine

- Runs on pressurized CO_2
- 4 pistons
- Easy to clean, plastic MOC will not corrode
- **©** Lightweight

Gym Chalk & Citric Acid

- Household chemicals, easily procured
- Affordable
- Safe to utilize, NFPA rating of 0 or1 in all categories

Custom frame

- Lightweight and resilient
- Precise fitting of components

EHS Considerations

Environment

⁽⁵⁾ Low carbon dioxide emissions

Health

Low toxicity chemicals

Safety

Pressure regulator allows for safe, consistent engine operation
Relief valves installed on reaction vessel and after regulator
Lever valve for emergency stop
All components selected for MAOP service & chemical compatibility
Gauges read 2x the max operating pressure

